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RELAXATION PROCESSES AND TIME SCALE TRANSFORMATION

I. Introduction

This report is concerned with the study of processes with non-stationary

transition rates (NSTR) all of which can be expressed as products of stationary

transition rates (STR) and the same function of the experimentally-measured

time. The latter function is so specified that the process can be viewed as

one with STh on a different time scale. Then the original process with NSTh

can be viewed as derivable from a process with STR by means of a time scale

transformation. Despite the fact that the class of NSTR considered is thereby

rather limited, the specification allows one to maintain the computational

simplicity of processes with STR while investigating the prototypal effects of

USTR in the description of physical processes.

The concept of time scale transformations is already familiar from dis-

cussions of homogeneous and non-homogeneous Poisson processes, Ihas been

mentioned as a possibility in discussions of the master equation, 2and has
recently been applied in cumulative damage models with discrete time parameter.3

However, it does not seem to have been exploited generally in the description

of relaxation processes. The object of this report is to consider relaxation

processes in the context of time scale transformations in order to gain insight

into the properties of relaxation processes with NSTR on the time scale of

measurements.

The next section deals with the specification and nature of time scale

transformations. In the third section, the phenomenology of the departure

from weak stationarity (time translational invariance of autocorrelation

functions) in the response of physical systems is discussed. In the fourth

section, a time regime of relaxation is specified to be one in which there is

a relaxation time for a NSTR process that is related to the relaxation time

of the STR process by the same time scale transformation used to connect the

respective processes. This leads to the requirement that the time scale

transformation is monomial in the time regime of relaxation. The resulting

model of relaxation processes will be referred to as the monomial relaxation

Manuscript submitted December 23, 1981.



model and designated the RM. It is noted that a widely applicable model of

relaxation processes '5 is an important example of an MRM.

In the fifth section, it is emphasized that the customary model of relaxa-

tion that employs a weighted sum of weakly stationery autocorrelation functions

(corresponding to a distribution of relaxation times) is not consistent with

an MRM. It is also argued that the weighted sum model does not have a satis-

factory physical basis, and therefore it is not a satisfactory model for relaxa-

tion processes.

A summary and discussion of the concepts and results of the report are

presented in the final section.

II. Time Scale Transformation and Transition Rates

A time scale or development parameter is taken tG be a positive, cumulative

function that increases from an origin monotonically. Consider two continuous

time scales e and t where 8 may be expressed as a function of the experimentally

measured time t. Without loss of generality, 8 and t may be taken to be

aligned such that their origins coincide.

e = 0(t), 6(0) = 0 . (2.1)

Specify further that dO/dt is positive, and finite everywhere except possibly

at isolated points. The case of constant d6/dt shall be excluded as uninteresting

so that a simple linear transformation is not considered. The relationship

between 8 and t is therefore essentially nonlinear.

Suppose now that transition rates on the 8 time scale, W(6) are stationary

(constant). Then

W() = W . (2.2)

On the t scale, the transition rates

W(t) = W (de/dt) (2.3)5

are non-stationary since d6/dt is a non-trivial function of t. W(t) is increased

or decreased with respect to W depending on the evolving magnitude of d8/dt.
5

If W represents a matrix of transition rates, the matrix is stationary on the

o scale and all components of the matrix are subjected to the same time scale
transformations.

There are several points worth noting. Time scale transformations do not

affect the order of events so causality is maintained. Also time scale trans-

formations do not affect the mechanism of transitions but only the way the

transitions are counted. Thus the properties of a process that depend on

nature of the state space in which it takes place are unaffected. Hence a

2

woman&



Markoff process remains a Markoff process and a nonfarkoff process remains a

nonMarkoff process under time scale transformations. Finally, it should be

emphasized that the concept of time scale transformations was introduced as an

artifact to provide computational simplicity in the consideration of a class

of NSTR. However, when physical processes are accurately describable in terms

of this limited class of NSTR, one might also consider the processes actually

to have STR and to be describable on an "intrinsic" time scale. Then the

intrinsic time scale is related to the experimentally measured time scale by

means of the time scale transformation.

III. Departure from Weak Stationarity

It is useful now to consider the effects of NSTR (compatible with the

time scale transformation formalism) in stochastic processes. It will be

sufficient for present expository purposes to consider Gaussian Markoff

processes with only a single, scalar transition rate. Again the starting

point will be a description of the process on a time scale for which the

transition rate is a constant.

Let a be a random variable representing deviations from equilibrium.

Then the fluctuation process may be presented by a linear regression or Langevin-

type equation

da/d6 = - W a(e) + e(8) (3.1)5

Here the effective decay interaction is linear (i.e. -W a) and it is assumed
s

that e(8) is Gaussian with moments

<E(e)> = 0 (3.2a)

<&(8 2) e(Ol)> = 2X6(e 1-62) (3.2b)

The brackets < > represent stochastic averaging. It should be emphasized that

it is assumed the correlations of the fluctuations are negligibly short on the

8-scale so that the 6-function is a functional of t. Although the introduc-

tion of the 6-function (negligibly short correlations for the stochastic
6.

driving term) here is not formally correct, its use in a straightforward way

does lead to the same results as in rigorous development.7

One may also question the use of a differential stochastic equation on a

more fundamental level. 8 Equation (3.1) is already irreversible so that it

can only be valid after an "induction" period in which microscopic reversibil-

ity is suppressed. Moreover it is clearly phenomenological since it describes

a system already decoupled from its environment with both reactive forces and

fluctuation sources represented as effective interactions within the system.
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Nevertheless on the phenomenological level, such an equation may provide a

satisfactory description of a physical process, at least in some time regime

where reference is made to an apparent origin. Indeed the success of the

usual Langevin equation on the t-scale bears witness to its usefulness.

Here the customary phenomenological description is generalized somewhat

by considering Eq. (3.1) to be valid on the 6 time scale. However, one would

expect the e and t scales to coincide at the very earliest times since the

physical mechanisms that lead to NSTR must first be established before there

is a difference between the two time scales. Similarly at very long times

when regression is completed, time differences must coincide so that d8/dt

must become unity. It is in intermediate regimes that NSTR are present and

lead to interesting physical effects.

As usual, the equilibrium distribution is taken to Gaussian and may be

viewed as resulting from an expansion of the entropy with retention only of

quadratic terms.
9

P(a) = (g/rrk)k exp[-ga 2/k], (3.3)

where k is the Boltzmann constant. Also since the restoring force X=3S/a=-ga,

jg is a linear force coefficient expressed in entropy units. It can be con-

verted to energy units by multiplication by the absolute temperature, T.

The usual results for equilibrium fluctuations follow, e.g.

<00P = U(O) exp[-W s] (3.4)

{<aU()>} = 0 (3.5)

where { } represents an average over the equilibrium distribution. Also from

the requirement that the equilibrium distribution is independent of 8, it

follows that

A = kW /g (3.6)s

Then the autocorrelation function takes the form

{<C(6)a(O)> = kg exp[-W s1 . (3.7)

This autocorrelation function is invariant under positive translations of
10

the origin of the e time scale so the process is weakly stationary on the e

time scale. However, when re-expressed in terms of t, the autocorrelation

function is obviously not invariant for translations of the origin of t. Thus

as physically measured, the process is not weakly stationary. The weak sta-

tionarity of the description on the 6 time scale may be understood as a reflec-

tion of the arbitrariness in the alignment of the two time scales. However

since the (apparent) origin of the experimentally measured time does enter in

4



a non-trivial way for a nonweakly stationary process, it is reasonable to

align the two origins as in Eq. (2.1). If this alignment is made, Eq. (3.7)

no longer implies weak stationarity since translations of e are no longer
allowable operations.

Thus a direct consequence of introducing NSTR is the departure from weak

stationarity. In a sense, the formalism is complementary to the more usual

efforts to generalize weakly stationary Markoff processes to weakly stationary

nonfarkoff processes that involve transformations in the state space. However

the need for a departure from weak stationarity in the description of physical
11,12,13processes is a recurrent theme in the literature. The time scale

formalism used in this report provides a straightforward means of introducing

such a departure while still retaining the computational simplicity associated

with weakly stationary processes.

IV. The Monomial Relaxation Model

Consider now the dynamics of a macroscopic perturbation a caused by an

external force X to be represented on the 0 time scale by

da/de = LX (4.1)

Again a linear approximation is made for X when & is undergoing decay, and it

is assumed that the path of a decay is the same as that for a regression of a

fluctuation u in section III. In energy units,

X = -gT , (4.2)

where T is the absolute temperature. Then the following identity holds,

W = LgT (4.3)
S

It follows that
-1 ]X)

or(e) = (gT) exp[-Ws] X(O) (4.4)

On the basis of Eq. (4.4), one may define a time dependent response

function, Z(e), as

Z(O) = (gT) "I exp[-W s] (4.5)
Then from Eq. (3.7), it follows that

Z(6) = (1/kT) {<a(6)a(O)>} (4.6)

This formula for the response function may be immediately recognized as being
14

of the Kubo-Green type in the classical regime.

Given this general framework, it is now desirable to apply it to a problem

of physical interest. First observe that the reciprocal of W may be identi-
5

fied as a relaxation time Ts, and the response function Eq. (4.5) is dependent
only on the ratio 6/T . In other words, Ts acts as a natural unit of time.
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Now define, in general, a relaxation process to be one for which the time

dependence is controlled by a function only of the ratio of the time to a

relaxation time T. This relaxation property does not in general hold on the t

time scale. However suppose there is a time regime for which the relaxation

property holds on the t scale and such that the 8 and t scales are aligned at

the apparent origin. Moreover suppose there is a self-consistency in the

definition of relaxation times so that they are related by the same time

transformation that relates the two time scales, i.e.

e(t) = T = W (4.7)
s 

s

Then the negative of the argument of the exponential in Eq. (4.5) is a function

of t/T, namely f(t/T) and

f(t/T) = 6(t)/8(T) (4.8)

In order for Eq. (4.8) to be valid, e(t) must be a monomial function, i.e.

0(t) = atb (4.9)

where a has the dimensions of time to the (1-b)th power and b>O so that do/dt

is positive and 0 satisfies Eq. (2.1). A system that is in the relaxation

regime so that Eq. (4.9) holds, will be said to be described by a monomial

relaxation model or MRM.

Recently, Ngai and coworkers 5 '15 18'2 2'2 3 have described a whole host of

physical relaxation phenomena with a model that can be cast in the form of an
KR.M. The appropriate time transformation is

-1y0b- b0(t) = b (e wC) t , (4.10)
c 0

where y is the Euler constant and w is a cutoff frequency for low energy
c

correlation excitations that are introduced to account for the statistical

behavior of energy levels in a complex system. The existence of the cutoff

frequency indicates that the process is being described for times greater than

the reciprocal of the cutoff frequency. Also since b is less than 1, the

effect of the time transformation is to spread out a given number of transi-

tions over increasingly lengthy time intervals. One may expect then an RM of

the Ngai type to describe physical phenomena that exhibit anomalous longtime

or low frequency behavior.

The time dependence of the response function, namely expt-(t/) b1, which

will be designated the monomial response function or MRF has often been used
20

to fit relaxation data. Indeed Struik in a brief historical review has

noted its application for more than half a century to such diverse phenomena

as stress relaxation in fibrous materials and glasses, volume recovery of

6



inorganic glass quenched from above to below the glass transition temperature,

stress relaxation and elastic recovery of unvulcanized rubbers, and the dielec-

tric relaxation of many amorphous polymers. The wide applicability of the flRF

has also been emphasized by Ngai5,15 " 18 who has applied it in the analysis of

measurements of dielectric response, mechanical response, nuclear spin-lattice

relaxation and transient transport in materials of widely different chemical

configurations and physical states. For example, Ngai and Henvis 1 7'2 1 have

reviewed essentially all available dielectric susceptibility (relaxation) data

with non-overlapping distinct peaks, and shown that the entire curves are

consistent with a description in terms of the MRF with appropriate choices of

O<bSl.

So far the discussion of the use of the MRF has referred to its applica-

tion over an extended time period or equivalently an extended frequency range.

However the 1/e value of the relaxation that occurs at t=T(0=T ) is an
S

important indicator that is often measured either directly or by derivation

from the placement of the peak of the imaginary part of the frequency dependent

susceptibility. As Ngai5 has emphasized the temperature dependence of such

measurements is controlled by the temperature dependence of Tb or equivalently

Ts . Then if EA is the activation energy of l/e value, the temperature of I is

controlled by an effective activation energy

E* = EA/b , O<b<l (4.11)

Straightforward analysis of data provide a value for E*. To obtain the true

value of the activation energy, one should multiply E* by b. Thus E* will

always appear greater than the true activation energy.

For example, Ngai 5 '16 has analyzed dispersive transport data for the

activation energy of small polaron hopping in a-SiO 2 prepared by thermally

oxidizing S1 under different conditions such that independently determined

values of b can be varied significantly. In such measurements, the transit

time tT plays the role of the relaxation time in an MRM, and the b parameter

can be determined from the shape of the current time dependence. Within

experimental error, he found EA to be invariant, and to coincide closely with
24

its value when directly measured in the very short time regime. At tempera-

tures lower than a third of the Debye temperature the small polaron mobility p

24
becomes non-Arrhenius, a well-known signature of small polaron hopping.

Since b is constant in this temperature regime, this non-Arrhenius behavior of

log p versus I/T may be described in terms of a temperature dependent activa-

7



tion energy of EA(T) 3(2n(l/p))/3(1/T). Then the measured temperature

dependence of the transit time tr is controlled by the effective activation

energy E7,(T) E 3(2n(t ))/(1I/T) which is related to E (T) by Eq. (4.11). It

is remarkable that this relation is verified for the entire temperature range

studied experimentally. Similarly, Ngai 5 ,17 and Taylor and Ngai have

analyzed transient hole transport measurements in c-As 2Se 3 for undoped samples

and samples doped with Cu, T2, I, Ga, In, etc. In these samples the b values

changed with doping. The measured E*, the activation energy for the transit
A

time, is a function of dopant and the doping level. In each case, Eq. (4.11)
remained valid for a constant EA that corresponds to the small polaron mobility

activation energy.
19

In other work, Starkweather and Barkley carried out a controlled study

of the dielectric relaxation of molecular group in nylon for which b was

varied by varying environmental conditions (humidity). Again EA remained

invariant in these measurements. The case of nylon with many molecular groups

provides an interesting caveat to the present discussion. In cases when there

are more than one distinct relaxation process ivolved as, for example, for

the respective relaxations of different, separated molecular groups in a

complex polymer, there is no reason to believe they would all share the same b

parameter even if they were all in respective relaxation regimes of time. In

the latter case, one would expect each process to be characterized by its own

b or time scale transformation.

An additional facet of Eq. (4.11) may be observed when b is a function of
temperature. Such a situation arises in inorganic glasses and amorphous

polymers that have a glass transition. Here b as determined in dielectric or

mechanical relaxation, or photon correlation spectroscopy measurements can be

a function of temperature in a temperature region near or above the glass

transition temperature where the materials undergo a glass-liquid or glass-

rubber transition. From Eq. (4.11), E* would then also be temperature dependent
A

so that the temperature dependence of the measured process would depart from

Arrhenius behavior. This correlation between E* and b(T) has been quantita-
22 A

tively established for some twenty polymers, for B203, for the molten salt

0.4 Ca(N0 3)2 0.6 KNO 3 and other materials.
23 For the cases of glasses and

glassy polymers, Eq. (4.11) together with b as a function of temperature is
24

equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the

Williams-Landel-Ferry empirical law for viscoelastic and dielectric relaxa-

tions. 25,26 8
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Together the wide applicability of the MRF and the validity of the more

subtle renormalization relation Eq. (4.11) provides considerable credibility

for the MRM. This is perhaps surprising because the MRM is based on a special

case of the limited class of NSTR that are compatible with time scale trans-

formations. A possible way to understand this wide physical applicability is

to consider that there is a general principle at work. Namely, once the

phenomenological regime of a response process is reached, the process has STR

but has its own intrinsic time which can be related to the measured time by a

monomial function in the relaxation regime. The alignment of the origins of

the 0 and t time scales reflects the fact that the process is initiated by

events that are measured on the t time scale. In other words, one could take

time scale transformation as fundamental and the NSTR as the artifact.

V. The MIA and Distribution of Relaxation Times

It has been demonstrated in the previous section that the MRM character-

ized by the monomial response function (MRF) provides a widely applicable

description of relaxation phenomena. From another viewpoint the MRF is one of

many possible examples of an empirical deviation of relaxation phenomena from

simple Debye behavior.2 7 From that viewpoint, the MRF is just an empirical

result of the weighted sum of simple exponential response functions with

different relaxation times. With the weighted sum in the form of an integral,

one can write

exp(-(t/T)b ] = f dT'g(r') exp[-(t/T')], O<b<l (5.1)
0

where

odT'g(T ' ) = 1 , g(r') > 0 (5.2)

Here g(t') is a real function with dimension of reciprocal time that represents

the distribution of relaxation times.

One implication of Eq. (5.1) is that the individual response functions

included in the integral are independent since the distribution of relaxation

times is not introduced in the state space but only after the individual

responses have been established. The numerical equivalence of the two sides

of Eq. (5.1) would then have to result from the occurrence of an appropriate

weighting of the simple exponential responses. However as emphasized in the

previous section, the form of the MRF is so pervasive in nature that it would

be a remarkable accident if physical weighting functions could so consistently

result in an empirical expression that coincides with the MRF.

9



In Eq. (5.1) the origins of the component response functions within the

integral have been aligned and the integral is weakly stationary. As discussed

in Section III, the left hand side is not. One could resolve this incompati-

bility by specifying that the weak stationarity of the right hand side is only

apparent so that the origin in t is taken to be fixed. Such a requirement on

the use of the weighted sum of simple exponential response functions is not

typically noted and indeed the weak stationarity property is frequently employed.

Thus the use of the weighted sum model can be misleading.

Moreover the concept of renormalization of the activation energies as in

Eq. (4.11) becomes submerged when the left hand side is thought to be only an

empirical artifact rather than a representation of true temporal behavior.

For then, the temperature dependence of the relaxation time for the process is

naturally identified with that of the average of the distributed relaxation

times. Such an average is not characterized by the appropriate renormalized
28

excitation energy. Indeed for the case b= , g(T') is known in a closed form,

viz.

g(T') = (4nT T') exp-(T'/4t) (5.3)

so that the average relaxation time (the integral of t' weighted by g(t') over

all ') is just

<T'> = (2)T (5.4)

This linear relation between <T'> and T shows that they both have the same

temperature dependence and the concept of energy renormalization never arises.

Furthermore, the distribution of relaxation times is often attributed to

"randomness" or "disorder." There are many relaxation processes such as the

relaxations in polymers that have a wide distribution of relaxation times and

yet each of their temperature dependence is governed by a constant activation

energy. It is difficult to understand why the "randomness" or "disorder" does

not give rise to a distribution of activation energies which then would not

have an Arrhenius behavior over extended temperature range.

To summarize, the weighted sum of simple exponentials can lead to an

empirical form that coincides numerically with an MRF. However, the pervasive-

ness of the form of the MRF in a wide range of material types and physical

states makes it difficult to understand why the weightings will always lead to

that form. Further, the weighted sum model is at best misleading in its

implication of weak stationarity. Finally, one of the most important proper-

ties of the MRF, namely the renormalization of the activation energy does not

10



arise naturally in the weighted sum model. Thus given that the Hm leads to a

HRF that characterizes a single correlated system, incorporates departure from

weak stationarity in a direct way, and introduces renormalization of activation

energies consistent with physical observations, one is led to choose the MRM

as the model of choice here.

VI. Concluding Remarks

The effect of nonstationary transition rates (NSTR) in systems described

on time scale of measurements has been studied for a limited class of NSTR

that can be represented as stationary transition rates (STR) on a different

time scale. Calculations have then been carried out for systems with STR and

the ensuing results related to systems with NSTR by means of a time scale

transformation. The time scale transformation is then a convenient artifact

that allows one to maintain computational simplicity.

A particular physically realistic result is the derivation of equilibrium

autocorrelation functions that are not weakly stationary. Also the formalism

is used to develop a model of relaxation phenomena, the monomial relaxation

model (MRM), that is applicable in the description of most measurements of

relaxation phenomena. The MRM is consistent with Ngai's recent model so that,

as in that model, there is a natural renormalization of activation energies

that is verified by empirical results.

The success of the MRM leads one to consider that it may be the resuiL of

a general principle rather than just based on a special case of the limited

class of NSTR initially considered. Namely, it may be that the phenomenlogical

description of many response phenomena involve processes that have STR and are

characterized by an intrinsic time scale. Then the time scale transformation

is an essential operation that allows the process to be described on the time

scale of measurement where the process appears to have NSTR. In that way, the

NSTR become the artifacts and computational simplicity is a true characteristic

of the process.

Whatever viewpoint is taken, the present treatment of NSTR on the time

scale of measurements has already been used to provide a prototypal generalization

of stationary Markoff processes, and to develop a widely applicable phenomeno-

logical model of relaxation processes.

11
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